Lesson 9: Basic Properties of Similarity

Classwork

Exploratory Challenge 1

The goal is to show that if \triangle ABC is similar to \triangle A'B'C', then \triangle A'B'C' is similar to \triangle ABC. Symbolically, if \triangle $ABC \sim \triangle$ A'B'C', then \triangle $A'B'C' \sim \triangle$ ABC.

a. First determine whether or not \triangle ABC is in fact similar to \triangle A'B'C'. (If it isn't, then there would is no further work to be done.) Use a protractor to verify that the corresponding angles are congruent and that the ratio of the corresponding sides are equal to some scale factor.

Basic Properties of Similarity 4/5/14

b. Describe the sequence of dilation followed by a congruence that proves $\triangle ABC \sim \triangle A'B'C'$.

c. Describe the sequence of dilation followed by a congruence that proves $\triangle A'B'C' \sim \triangle ABC$.

d. Is it true that \triangle ABC \sim \triangle A'B'C' and \triangle A'B'C' \sim \triangle ABC? Why do you think this is so?

Exploratory Challenge 2

The goal is to show that if \triangle ABC is similar to \triangle A'B'C', and \triangle A'B'C' is similar to \triangle A''B''C'', then \triangle ABC is similar to \triangle A''B''C''. Symbolically, if \triangle ABC \sim \triangle A''B''C' and \triangle A''B''C'', then \triangle ABC \sim \triangle A''B''C''.

a. Describe the similarity that proves $\triangle ABC \sim \triangle A'B'C'$.

b. Describe the similarity that proves $\triangle A'B'C' \sim \triangle A''B''C''$.

Verify that, in fact, \triangle $ABC \sim \triangle$ A''B''C'' by checking corresponding angles and corresponding side lengths. Then describe the sequence that would prove the similarity \triangle $ABC \sim \triangle$ A''B''C''.

d. Is it true that if \triangle $ABC \sim \triangle$ A'B'C' and \triangle $A'B'C' \sim \triangle$ A''B''C'', then \triangle $ABC \sim \triangle$ A''B''C''? Why do you think this is so?

Date:

Lesson Summary

Similarity is a symmetric relation. That means that if one figure is similar to another, $S \sim S'$, then we can be sure that $S' \sim S$.

Similarity is a transitive relation. That means that if we are given two similar figures, $S \sim T$, and another statement about $T \sim U$, then we also know that $S \sim U$.

Problem Set

- 1. Would a dilation alone be enough to show that similarity is symmetric? That is, would a dilation alone prove that if $\triangle ABC \sim \triangle A'B'C'$, then $\triangle A'B'C' \sim \triangle ABC$? Consider the two examples below.
 - a. Given \triangle $ABC \sim \triangle$ A'B'C'. Is a dilation enough to show that \triangle $A'B'C' \sim \triangle$ ABC? Explain.

b. Given $\triangle ABC \sim \triangle A'B'C'$. Is a dilation enough to show that $\triangle A'B'C' \sim \triangle ABC$? Explain.

c. In general, is dilation enough to prove that similarity is a symmetric relation? Explain.

Lesson 9: Date: Basic Properties of Similarity 4/5/14

- 2. Would a dilation alone be enough to show that similarity is transitive? That is, would a dilation alone prove that if \triangle $ABC \sim \triangle$ A'B'C', and \triangle $A'B'C' \sim \triangle$ A''B''C'', then \triangle $ABC \sim \triangle$ A''B''C''? Consider the two examples below.
 - a. Given \triangle $ABC \sim \triangle$ A'B'C' and \triangle $A'B'C' \sim \triangle$ A''B''C''. Is a dilation enough to show that \triangle $ABC \sim \triangle$ A''B''C''? Explain.

b. Given \triangle $ABC \sim \triangle$ A'B'C' and \triangle $A'B'C' \sim \triangle$ A''B''C''. Is a dilation enough to show that \triangle $ABC \sim \triangle$ A''B''C''? Explain.

c. In general, is dilation enough to prove that similarity is a transitive relation? Explain.

Lesson 9: Date: Basic Properties of Similarity 4/5/14

3. In the diagram below, \triangle $ABC \sim \triangle$ A'B'C' and \triangle $A'B'C' \sim \triangle$ A''B''C''. Is \triangle $ABC \sim \triangle$ A''B''C''? If so, describe the dilation followed by the congruence that demonstrates the similarity.

